挂牌玄机彩图

昆明植物所揭示菟丝子在不同寄主间传递系统性
更新时间:2019-11-04

  作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。/ 更多简介 +

  中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

  中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

  上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,2013年经教育部正式批准。上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

  寄生是一种比较常见的互作关系。在被子植物中,寄生植物有3000多种,占到大约1%。寄生植物通过一个特殊的器官——吸器,从寄主获取营养、水分等生长所需物质,寄主生长和繁殖也因此受到严重影响。开奖结果,由于其特殊的生理、生态和进化,寄生植物近年来得到了越来越多的关注和研究。

  菟丝子是旋花科的茎全寄生植物,其大多数种类的叶片和根在进化过程中已经完全退化消失,只有少数种类还残存微弱的光合能力。近来有研究表明,除了水分和营养,很多物质都能够在菟丝子和寄主之间运输,包括蛋白质、mRNA以及次生代谢物等。然而,菟丝子与寄主间的相互作用研究还非常缺乏。

  自然界中,菟丝子常常能够同时寄生在多个邻近的寄主上,从而将不同的寄主连接起来。中国科学院昆明植物研究所吴建强课题组与马普化学生态学研究所教授Ian T. Baldwin合作,创新性地提出了“菟丝子及其连接的不同寄主形成微群落”这一崭新概念,并且发现在这种微群落中,菟丝子能在不同寄主植物间传递有生态学效应的抗虫系统性信号。研究人员利用菟丝子将不同寄主植物进行了连接,当对其中一株寄主植物做昆虫取食处理后发现,被取食叶片产生了某种系统性抗虫信号,这些信号能够被运输到被处理植物的其它部分并诱导抗虫响应;更重要的是,系统性信号能够通过菟丝子传递到微群落中的其它寄主植物,从而诱导转录组和代谢物响应并提高其抗虫性。该系统性抗虫信号在不同物种间非常保守,甚至可以在不同科的寄主植物间传递并诱导抗虫性,而且茉莉酸(jasmonic acid)在此系统性信号的产生或传递过程中扮演着重要的角色。他们的研究还指出,菟丝子传导的抗虫系统性信号产生和传播速度非常快(大约1cm/分钟),而且还可以远距离传递(超过100cm)。

  尽管寄生植物一向被视为为对寄主“有害无益”,该研究表明,菟丝子在某些条件下可以帮助不同寄主之间建立起抗虫防御的“联盟”。这是首次从分子水平揭示了菟丝子连接的植物微群落中,菟丝子和寄主、寄主与寄主间复杂的相互作用关系,此研究对了解抗虫系统性信号也有较重要的意义,也对农业上治理寄生植物危害提供了新的启示。

  该研究得到了中科院战略性先导科技专项(B类)、自然科学基金、马普伙伴小组国际合作等经费的支持。

  A.斜纹夜蛾取食L叶片后诱导的S1(被取食大豆的系统性叶片)和S2(菟丝子连接的未被取食的大豆叶片)转录组中受到调控的基因的维恩分析图。B. S2叶片中抗虫物质TPI的活性变化。C.处理组和对照组中S2叶片的抗虫性分析。

  将拟南芥野生型(Col-0)或者茉莉酸合成缺陷突变体dde2-2和栽培烟草通过菟丝子进行连接后,发现茉莉酸是重要的抗虫系统性信号的重要调控因子。

  寄生是一种比较常见的互作关系。在被子植物中,寄生植物有3000多种,占到大约1%。寄生植物通过一个特殊的器官——吸器,从寄主获取营养、水分等生长所需物质,寄主生长和繁殖也因此受到严重影响。由于其特殊的生理、生态和进化,寄生植物近年来得到了越来越多的关注和研究。

  菟丝子是旋花科的茎全寄生植物,其大多数种类的叶片和根在进化过程中已经完全退化消失,只有少数种类还残存微弱的光合能力。近来有研究表明,除了水分和营养,很多物质都能够在菟丝子和寄主之间运输,包括蛋白质、mRNA以及次生代谢物等。然而,菟丝子与寄主间的相互作用研究还非常缺乏。

  自然界中,菟丝子常常能够同时寄生在多个邻近的寄主上,从而将不同的寄主连接起来。中国科学院昆明植物研究所吴建强课题组与马普化学生态学研究所教授Ian T. Baldwin合作,创新性地提出了“菟丝子及其连接的不同寄主形成微群落”这一崭新概念,并且发现在这种微群落中,菟丝子能在不同寄主植物间传递有生态学效应的抗虫系统性信号。研究人员利用菟丝子将不同寄主植物进行了连接,当对其中一株寄主植物做昆虫取食处理后发现,被取食叶片产生了某种系统性抗虫信号,这些信号能够被运输到被处理植物的其它部分并诱导抗虫响应;更重要的是,系统性信号能够通过菟丝子传递到微群落中的其它寄主植物,从而诱导转录组和代谢物响应并提高其抗虫性。该系统性抗虫信号在不同物种间非常保守,甚至可以在不同科的寄主植物间传递并诱导抗虫性,而且茉莉酸(jasmonic acid)在此系统性信号的产生或传递过程中扮演着重要的角色。他们的研究还指出,菟丝子传导的抗虫系统性信号产生和传播速度非常快(大约1cm/分钟),而且还可以远距离传递(超过100cm)。

  尽管寄生植物一向被视为为对寄主“有害无益”,该研究表明,菟丝子在某些条件下可以帮助不同寄主之间建立起抗虫防御的“联盟”。这是首次从分子水平揭示了菟丝子连接的植物微群落中,菟丝子和寄主、寄主与寄主间复杂的相互作用关系,此研究对了解抗虫系统性信号也有较重要的意义,也对农业上治理寄生植物危害提供了新的启示。

  博士后Christian Hettenhausen(德国籍)和博士李娟为该论文的共同第一作者,研究员吴建强为该文章的通讯作者。研究成果以The stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants为题作为封面文章,于7月25日在线发表在《美国科学院院刊》(PNAS)上。

  该研究得到了中科院战略性先导科技专项(B类)、自然科学基金、马普伙伴小组国际合作等经费的支持。

  A. 斜纹夜蛾取食L叶片后诱导的S1(被取食大豆的系统性叶片)和S2(菟丝子连接的未被取食的大豆叶片)转录组中受到调控的基因的维恩分析图。B. S2叶片中抗虫物质TPI的活性变化。C. 处理组和对照组中S2叶片的抗虫性分析。

  将拟南芥野生型(Col-0)或者茉莉酸合成缺陷突变体dde2-2和栽培烟草通过菟丝子进行连接后,发现茉莉酸是重要的抗虫系统性信号的重要调控因子。